(ELECTIVE - A/I)

4/4 B.Tech. SEVENTH SEMESTER

CE7T4A PRE-STRESSED CONCRETE STRUCTURES Credits: 3
Lecture: 3 periods/week Internal assessment: 30 marks
Tutorial: 1 period /week Semester end examination: 70 marks

Pre-requisites: Design of concrete structures, Materials of solids

Learning objectives:

- To know the various prestressing methods and analysis of prestress and the resultant stresses using different concepts.
- To learn the losses in prestressed concrete & anchorage zone stresses in end block.
- To consider flexure, shear and deflection as per IS code.
- To design prestressed concrete beam & slab.

Course outcomes:

At the end of course the student will be able to:

- 1. Comprehend basic concepts of pre-stressing and IS codal provisions.
- 2. Consider Losses of prestress and analyse prestressed beam sections.
- 3. Design prestressed sections subjected to flexure & shear and end blocks.
- 4. Comprehend composite prestressed sections and assess deflection of pre-stressed concrete beams.
- 5. Design prestressed one way slab and two way slab.

UNIT – I

INTRODUCTION

Historic development – General principles of prestressing, pretensioning and post tensioning – Advantages and limitations of prestressed concrete – Materials – High strength concrete and high tensile steel their characteristics.

PRESTRESSING METHODS

I.S. Code provisions, Methods and Systems of prestressing; pre-tensioning and post tensioning methods – Analysis of post tensioning - Different systems of prestressing like Hoyer System, Magnel System Freyssinet system and Gifford – Udall System.

UNIT - II

LOSSES OF PRESTRESS

In pre-tensioned and post-tensioned members due to various causes like elastic shortage of concrete, shrinkage of concrete, creep of concrete, Relaxation of steel, slip in anchorage bending of member and frictional losses.

ANALYSIS

Analysis of sections for flexure; Elastic analysis of concrete beams, prestressed with straight, concentric, eccentric, bent and parabolic tendons.

UNIT – III

DESIGN

Design of Sections for Flexure and Shear, Allowable stress, Design criteria as per I.S.Code – Elastic design of simple rectangular and I-section for flexure, shear, and principal stresses – design for shear in beams – Kern – lines, cable profile.

END BLOCKS

Analysis of End Blocks by Guyon's method and Magnel method, Anchorage zone stresses – Approximate method of design – Anchorage zone reinforcement – Transfer of prestress pretensioned members.

UNIT - IV

COMPOSITE SECTION

Introduction – Analysis of stress – Differential shrinkage – General design considerations.

DEFLECTIONS OF PRESTRESSED CONCRETE BEAMS

Importance of control of deflections – factors influencing deflections – short term deflections of uncracked members – prediction of long term deflections.

UNIT - V

PRESTRESSED CONCRETE ONE WAY SLAB

Introduction – Design Considerations – Design of prestressed one way slab.

PRESTRESSED CONCRETE TWO WAY SLAB

Introduction – Design Considerations – Design of prestressed two way slab.

Learning resources:

Text books:

- 1. Pre-stressed Concrete, (4th edition) by Krishna Raju, Tata McGraw-Hill 2009.
- 2 Pre-stressed Concrete by Rajagopalan N., Narosa Publications, 2013.

Reference books:

- 1. Pre-stressed Concrete, (5th edition) by Ramamrutham, Dhanpatrai Publications, 2010.
- 2. Design of Pre-stressed concrete structures, (3rd Edition) Lin T.Y. and NedBurns H., John Wiley & Sons, 2010.
- 3. IS 1343 Codes: BIS code on prestressed concrete,1980.

1		
Α-	learning	resources
C-1	cai ming	I Coult Co

http://nptel.ac.in/courses.php
http://jntuk-coeerd.in/